

Application Development

Component Architecture

Revision Date: September 22, 2000

Table of Contents
Section 1 - Background and Decision Tools ...1

Business Direction ...1
Architecture Requirements...1
Conceptual Architecture...2

Section 2 - BEAM Recommendations...4
Application Development Component ..4
Application Development Component Principles ...5
Application Development Toolset Vision*...6

Application Development Sub-Components..9
Requirements Management and Tracking Tools Sub-Component9

Definition.. 9
Standards .. 9
Products .. 10
Tech Watch ... 10
Review Cycle... 10

Languages Sub-Component ..11
Definition.. 11
Standards .. 11
Tech Watch ... 14
Review Cycle... 14

Code Generators Sub-Component ..15
Definition.. 15
Standards .. 15
Products .. 15
Tech Watch ... 15
Review Cycle... 16

Issue Tracking and Resolution Tools Sub-Component17
Definition.. 17
Standards .. 17
Products .. 18
Tech Watch ... 18
Review Cycle... 18

Version and Configuration Management Tools Sub-Component.....................19
Definition.. 19
Standards .. 19
Products .. 19
Tech Watch ... 19
Review Cycle... 19

Integrated Development Environments (IDEs) Sub-Component......................20
Definition.. 20
Standards .. 20
Products .. 21
Tech Watch ... 21
Review Cycle... 21

Revision History ..22

Application Development Component Document -

Department of Motor Vehicles

Section 1 - Background and Decision Tools

Business Direction
Business Direction, which includes Business Influences, Goals and Objectives, forms
the foundation of the BEAM process and the DMV’s Enterprise Architecture. This
foundation is the first step from which all information technology decisions are made
and can be traced. Business objectives are common across the DMV enterprise and
represent DMV’s stated direction for fulfilling the organization’s mission. The primary
objective of the BEAM process is to develop a flexible, comprehensive, maintainable
framework to manage the rapid evolution of technologies that support the business
directions of the DMV. This approach will directly link all technologies implemented to

Architecture Requirements
The Architecture Requirements consists of two sections, Information Requirements and
Technology Requirements. This is the first step in the BEAM process that begins to
focus on specific technologies.

Information Requirements represent the informational needs that are necessary to fulfill
DMV’s Business Goals and Objectives. Information Requirements bridge the gap
between what the Business Goals and Objectives are and what DMV’s information
systems must deliver to allow management to met these goals and objectives. An
individual Information Requirement is typically applicable to more than one Business
Objective. Information Requirements are not system or division specific, rather they are
related to the information itself. Information delivery refers to the process of delivering
information to and from people or groups of people, rather than the input or output of
data from databases or applications.

Technology Requirements represent the technologies that satisfy the Information
Requirements. In addition, the Technology Requirements feed the DMV Domain Model
(Figure 1), which organizes each IT technology into manageable categories called
domains, components and Sub-Components. The Technology Requirements detail the
specific technologies that satisfy the Information Requirements.

Application Development Component Document Page 1

Department of Motor Vehicles

Figure 1: Domains and Components

Data
Transaction

Data
Decision
Support

Applications
Application

Development
Presentation Middleware Commercial

Software

Infrastructure
Network Platform Telephony Facilities

In
te

gr
ity

Te

st
ing

M

od
el

in
g

&
M

et
ad

at
a

Sy
st

em
s

M
an

ag
em

en
t

Se
cu

rit
y

Collaboration
Case Work

DSS

Batch

Governance
Process Technology Personnel

Usage
Guidelines OLTP

Conceptual Architecture

The Conceptual Architecture defines the principles and industry-leading best practices
that will guide future IT and process decisions. The Conceptual Architecture is derived
from DMV’s Business Goals, Objectives, Information Requirements and Technology
Requirements. Conceptual Architecture Principles (CAPs) are important to the BEAM
process because they help ensure that the decisions made later in the Component
Architecture development process are consistent.

The following pages contain CAPs that apply to the Application Development
Component:

Application Development Component Document Page 2

Department of Motor Vehicles

Applicable Conceptual Architecture Principles

Gov-Proc 6 Follow a total cost of ownership (TCO) methodology.
Gov-Proc 7 Develop service level agreements (SLA) for all IT services.
Gov-Tech 1 Design systems (i.e., hardware, software, operating systems, networks) to

be robust enough to handle changing business needs.
Gov-Tech 2 Deploy information systems across an N-Tier*, distributed computing

environment.
Gov-Tech 3 Design flexibility into the architecture to accommodate continuing business

changes and improvements in technology.
Gov-Tech 4 Design DMV systems for scalability and increased functionality.
Gov-Tech 9 DMV must base all enterprise system development on a set of system

independent enterprise design products including an enterprise data model,
an enterprise object model, an enterprise business process model and an
enterprise business rules repository.

Gov-Tech 10 DMV must not allow individual system development or implementation
efforts to dictate enterprise architecture, enterprise data models, enterprise
object models, enterprise business process models or enterprise business
rules without an independent review from an enterprise level.

Gov-Tech 11 All system development and COTS systems implementations must be fully
tested by an independent testing unit prior to deploying the initial system or
any major upgrades.

Gov-Pers 13 DMV must use a strong, experienced project manager on every project.
Apps 1 Centrally manage and administer DMV applications.
Apps 2 All business logic will reside in a middle tier, separated from the database

access and presentation services.
Apps 3 Document, maintain and manage application component information in a

shared enterprise repository.
Apps 4 Represent business logic and transaction services in universally accessible

components.
Apps 5 Coordinate and manage business rules from an enterprise perspective.
Apps 6 Business units are responsible for defining and maintaining the integrity of

the business rule content within their program area.
Apps 7 Architect systems to be business event driven.
Apps 8 Use packaged solutions where feasible before building custom solutions.
Apps 9 Develop and deploy applications to utilize a common and shared set of

server, network and middleware services.
Apps 10 All software development efforts shall include the Project Management

Plan.
Apps 11 Utilize a standard system development methodology.

*For a definition of an N-Tier environment, please see the Glossary section of the BEAM intranet site at:
 http://dmvweb/isd/beam/

Application Development Component Document Page 3

Department of Motor Vehicles

Section 2 - BEAM Recommendations

Application Development Component
The Application Development Component provides a guideline for the tools, standards
and technologies that will be utilized within the framework of the architecture.

Specific technology Sub-Components in the Application Development component
include:

�� Requirements Management and Tracking Tools Sub-Component
�� Languages Sub-Component
�� Code Generators Sub-Component
�� Issue Tracking and Resolution Tools Sub-Component
�� Version Control Tools Sub-Component
�� Integrated Development Environment (IDE) Sub-Component

Application Development Component Document Page 4

Department of Motor Vehicles

Application Development Component Principles
The following principles form the core tenets of the Application Development
Component

Application Development Component Principles

1. Store business rules in a central enterprise repository, accessible to all authorized
users.

2. Involve users in application development, test and deployment to improve ease of
learning, use and support.

3. Design applications for ease of development, test, deployment, maintenance and
support.

4. Develop application functionality that can be called as services implementing
documented component interfaces.

5. Build reusable components to be shared across the enterprise.

6. Maintain information about available reusable components.

7. Ensure that new components do not replicate existing components’ functionality.

8. Utilize effective component management methodologies, including the tools to
promote component reuse.

9. Assign ownership and maintenance responsibilities for all components.

10. Implement one business rule or function, or a single set of related business rules
or functions, per component.

11. Applications should access existing data prior to prompting users to re-enter data.

12. Utilize Requirements Management Tools for capturing and tracking application
requirements.

13. Trace requirements throughout the application development lifecycle.

14. The development environment should support remote, collaborative, multi-
organizational and multi-project team development.

15. Implement enterprise-wide version control processes and procedures.

Application Development Component Document Page 5

Department of Motor Vehicles

Application Development Component Principles

16. Conduct performance and volume testing on all applications prior to deployment.

Application Development Toolset Vision*

To provide the speed and flexibility required to deliver solutions to meet the ever-
changing demands on the DMV, it is imperative that the applications development tools
environment be optimized for, and integrated with, the applications deployment
environment. Therefore, to a large degree, the tools for developing applications and
managing the application development lifecycle will be driven by the decisions made in
the applications, data, and infrastructure areas. That is, the most appropriate
applications development toolsets will be those that work best with the standards and
products that have been selected for platforms, networks, transaction data, and
middleware.

The vision for the applications deployment environment at the DMV is a heterogeneous,
multi-tiered, distributed computing environment. Applications will be deployed as
discrete, service-based components across (for example) OS390, Solaris and AIX
platforms against legacy, and commercial RDBMS data sources (such as DB2 and/or
Oracle). These components will be integrated through the use of a middleware solution
(Enterprise Application Integration product suite) and target a web browser as the
primary client through a shared set of web server services.

To support this, the applications development languages and tools should be selected
to coordinate the building and deploying of applications in this complex environment. In
addition, the various development and development management tools should integrate
their capabilities in order to further simplify these development tasks.

NOTE: The BEAM team recognizes the need to also provide development environment
support for batch processing on the mainframe; however, additional research remains
to be done before standards and products can be defined for this environment.

There are primarily two language sets targeted for the heterogeneous environment.
Java has been adopted by a large number of vendors and ported to most platforms.
Most middleware service products and application integration environments support it
and IBM has made strong commitments to its future as the preferred language for the
mainframe. This is important in the DMV context, since it allows a choice of platforms
(OS/390 as well as UNIX) to host mid-tier functionality such as middleware and
business logic. This architectural flexibility permits a wide range of performance/cost
tradeoffs when implementing applications. For the other alternative, Microsoft has
recently unveiled its .NET initiative. Part of that initiative is a new set of development
languages / environments. C# (C Sharp) is a modification of the C++ language to add

Application Development Component Document Page 6

Department of Motor Vehicles

Java like safety features (garbage collection, etc.) The .NET technologies are
extremely new and unproven and are currently primarily restricted to the Windows
family platforms. Therefore, Java will be selected as the targeted development
language for new development (although maintenance and tweaking of existing
systems may still continue in other languages.)

Therefore, the applications development toolset should provide for Java development
across the various platforms in the target environment. In addition, given the
complexity of designing and building in the distributed computing environment, the
applications development tools should be packaged as an integrated suite. Of the
leading Java development suites in the market, IBM’s VisualAge For Java is the clear
market leader and has the richest feature set for building Java applications in a mixed
environment like the one here. This suite has the added advantage of a powerful Java
code generator and support for Cobol and other languages for legacy maintenance
tasks. IBM’s VisualAge For Java is bundled with WebSphere Studio Application
Developer (WSAD), the core development environment from IBM.

Finally, the tools surrounding the management of application development tasks
(requirements management, system modeling, OO design, issue tracking, etc.) need to
be streamlined and efficient to give the development lifecycle the speed and flexibility
that is required to meet the ever-changing demands on the DMV systems. So it is
important these tools provide an integrated set of functions that operate on the various
platforms and with the selected development tools.

IBM recommends the Rational suite of products as a best-of-breed solution to work with
VisualAge. This suite provides an integrated environment for managing requirements,
analysis, design, issue tracking and version control and is a clear market leader.
Combined with VisualAge, it provides a unified, end-to-end framework toolset for all
aspects of developing and deploying distributed applications.

To summarize, the vision for applications development at DMV is an integrated
VisualAge / Rational development environment producing Java based distributed
components across a heterogeneous environment.

The subcomponents within the Application Development component, and their related
product selections, are:

�� Requirements Management and Tracking Tools Sub-Component – Rational
Requisite Pro

�� Languages Sub-Component – Java (please note that this is the choice for
business logic: there are a number of language selections specified for this
subcomponent, depending on usage)

�� Code Generators Sub-Component – IBM VisualAge For Java and
ScriptBuilder.

�� Issue Tracking and Resolution Tools Sub-Component – Rational ClearQuest

Application Development Component Document Page 7

Department of Motor Vehicles

�� Version Control Tools Sub-Component Component – Rational ClearCase
Family

�� Integrated Development Environment (IDE) Sub-Component – IBM
VisualAge For Java

*Note: This Vision section was drafted to serve as the rationale for the Product selections found in the
remainder of this document. For this reason, no “Rationale” sections have been provided in the Product
selections for each Sub-Component.

Application Development Component Document Page 8

Department of Motor Vehicles

Application Development Sub-Components

Requirements Management and Tracking Tools Sub-Component

Definition

Tools to manage requirements, and to support traceability of requirements into design,
implementation and documentation artifacts. Requirements management and tracking
tools provide for automated support for extracting requirements from a specification,
assigning unique identification numbers, tracing requirements through different
specification levels, and creating a trace matrix. Requirements can be extracted from a
source specification, or manually entered by the user, for storage in a requirements
management database. Attributes and keywords can be assigned to each requirement
statement to ensure desirable management abilities.

Standards

 # Requirements Management and Tracking Tools Standards

1. Must exchange data with Microsoft Word for documentation.

Rationale:

�� There are no de facto standards for these tools. However, a tool which supports Word format
will produce output which is widely accessible without incurring high client-side licensing costs,
and can be saved as HTML if required for Web use.

2. Must support a browser-based client interface

Rationale:

�� There are no de facto standards for these tools. A tool, which supports a browser interface,
will simplify configuration management, and reduce client-side licensing costs.

3. Must integrate with DMV standard design tools (e.g., object-oriented modeling tools and data
design tools).

Rationale: The use of DMV standard productivity tools will enable collaborative efforts.

Application Development Component Document Page 9

Department of Motor Vehicles

Products

Products

1. Rational RequisitePro

Tech Watch
None

Review Cycle
1 year

Application Development Component Document Page 10

Department of Motor Vehicles

Languages Sub-Component

Definition

A language is used to write instructions for the computer. It lets the programmer
express data processing in a symbolic manner without regard to machine-specific
details.

The statements that are written by the programmer are called code or source code, and
they are translated into the computer's machine language by programs called
assemblers, compilers and interpreters.

Programming languages fall into two categories: low-level assembly languages and
high-level languages. Assembly languages are available for each CPU family, and
each assembly instruction is translated into one machine instruction by the assembler
program. With high-level languages, a programming statement may be translated into
one or several machine instructions by the compiler or may be interpreted at run-time.

Standards

 # Languages Standards

1. Standard: Structured Query Language (SQL)

Usage:

�� Language for database queries

Rationale:

�� SQL is an industry standard, as well as an ANSI standard (X3.135-1992, soon to be
superseded by ANSI/IEC 9075), supported by a large number of vendors. Use of a standard
query language eliminates dependence on proprietary query languages [CAP 22, CAP 47].

2. Standard: Stored Procedure Language:
�� PL/SQL
�� Transact-SQL - a Microsoft product compatible with SQL Server

�� Java - supported by recent releases of DB/2

Usage:

�� Procedural language for SQL

Rationale:

�� Procedural database management system (DBMS) languages should be used wherever
possible to standardize and simplify the processing associated with database transactions.
They should be used instead of existing 3GLs (e.g., C) routines since, in general, they are more

Application Development Component Document Page 11

Department of Motor Vehicles

 # Languages Standards
maintainable and self-documenting [CAP 22, CAP 47]. ANSI is developing a standard for
procedural extensions of SQL; the first draft of this standard was directly based on PL/SQL.

(Note: Product selection will depend on DBMS selection)

3 Standard: Java
Usage:

�� High-level language for business logic programming

Rationale:

�� Java is a de facto standard language, controlled by Sun Microsystems. Use of client-side Java
enables component reuse (through the OO structure of Java and the use of Java Beans), web-
enabled processing (User Interface [UI] components can be served to a browser rather than
installed on each user workstation, simplifying configuration management) and standard user-
interface components (through the use of Swing, a GUI interface). Use of server-side Java
supports multi-threading, which allows concurrent user access [CAP 50], better scalability [CAP
16], and component reuse (Enterprise Java Beans).

This solution provides a means of separating database functionality from the UI [CAP 14, CAP
45] and can simplify redistribution of processing among servers [CAP 15]. In addition, the
related component architecture (EJB) exposes method interfaces transparently (though to
varying extents), which supports reuse and documentation.

4 Standard: Application Scripting language:
�� Perl
�� Tcl

(Note: Must be platform-independent, should be object-oriented, and compatible
with platforms and OS’s specified in Infrastructure domain.

Note further that, for system-level scripting, the tools to be used depend on what
is provided with the operating system.)

Usage:

�� Development, test, integration and prototyping.

Rationale:

�� Object-oriented scripting languages enable reuse of functionality within scripts. The use of
scripting languages simplifies development, test, and the integration of applications, particularly
of commercial off-the-shelf (COTS) packages. This improves flexibility when configuring
packaged solutions [CAP 51].

Many scripting languages support platform abstraction (e.g., through Posix calls—ref. ISO/IEC
9945-1), which simplifies the task of moving from one platform/OS to another [CAP 13, CAP 15,

Application Development Component Document Page 12

Department of Motor Vehicles

 # Languages Standards
CAP 16] and reduces the present tight coupling of hardware and OS features to applications
[CAP 21, CAP 22].

5 Standard: There is no standard specified for system-level coding.

Rationale:

�� The tools to be used depend on what is supported by the target operating system.

 Usage:

�� System-level coding only.

6 Standard: Hypertext Markup Language (HTML)

Usage:

�� Used for editing of Web pages

Rationale:

�� This is the standard language used for Web development. It has been standardized by the
Word Wide Web Consortium (W3C).

7 Standard: JavaScript

Usage:

�� Language used for client-side scripting in Web interfaces

Rationale:

�� This is the standard language used for Web development. It has been standardized by the
W3C.

8 Standard: Dynamic HTML

Usage:

�� Used for generating dynamic (changing) HTML content

Rationale:

�� This is the standard language used for Web development. It has been standardized by the
W3C.

9. Standard: eXtensible Markup Language (XML)

Application Development Component Document Page 13

Department of Motor Vehicles

 # Languages Standards

Usage:

�� XML allows designers to create their own customized tags, enabling the definition,
transmission, validation, and interpretation of data between applications and between
organizations. XML is a format for the interchange of metadata.

Rationale:

�� XML is a subset of Standard Generalized Markup Language (SGML) which is designed
especially for Web documents. XML may eventually replace HTML as the standard Web
formatting specification, but that depends on whether or not it is supported by future Web
browsers. Microsoft Internet Explorer version 5 handles XML, but renders it as Cascading Style
Sheets (CSS), and Netscape is still experimenting with XML support. In addition, XML tags and
schemas are not yet defined for the types of transactions that are applicable at DMV.

10 Standard: Enterprise JavaBeans (EJB)

Usage:

�� Component/container model

Rationale:

�� EJB is consistent with DMV’s server platform and business logic language standards.

Tech Watch
None

Review Cycle
1 year

Application Development Component Document Page 14

Department of Motor Vehicles

Code Generators Sub-Component

Definition

Code Generators generate application programs from descriptions of the problem
rather than by traditional programming. It is at a higher level and easier to use than a
high-level programming language. One statement or descriptive line may generate a
huge routine or an entire program. However, application generators always have limits
as to what they can be used for. Generators used for complex program development
allow if-then-else programming to be expressed along with the simpler descriptive
entries.

Standards

Code Generators Standards

1. Must generate DMV-supported programming language(s).

Rationale:

�� This standard ensures that code generated by code generators does not require special skills
or tools to support.

Products
At the time of this review, the following product(s) were identified as the leaders in this
sub-component area. A single product has not been select as the DMV standard.
When a product is needed, please contact a BEAM representative to further assist in
the research and selection process for the department.

 # Products
1. IBM VisualAge For Java

2. ScriptBuilder, by NetObjects (for script generation)

Tech Watch
None

Application Development Component Document Page 15

Department of Motor Vehicles

Review Cycle
1 year

Application Development Component Document Page 16

Department of Motor Vehicles

Issue Tracking and Resolution Tools Sub-Component

Definition

Tools that use a case-tracking mechanism to document and track open issues. Tools
for managing the on-going issues and problems associated with test or production
activities. In application development, these tools typically are associated with
application debugging and testing. Note that these tools do not replace help-desk tools
(for example, Remedy), but supplement them.

Standards

 # Issue Tracking and Resolution Tools Standards

1. Must have a Web-based user interface

Rationale:

�� This enables participation in the issue resolution and tracking process without the need to install
client software.

2. Must integrate with the DMV standard version control system.

Rationale:

�� Changes to DMV systems should only be made in response to approved bug reports or
enhancement requests. This requires integration of check-in/check-out with these reports.

3. Must allow use of the DMV standard DBMS as a repository.

Rationale:

�� This approach enables use of DMV’s enterprise Decision Support Software (DSS) for
Quantitative Process Management (QPM). QPM uses process metrics as an objective basis
for system engineering decisions (e.g., average fix time for bugs, number of new problems
found per month, number of requirement changes requested per month). This helps focus the
development and maintenance efforts to the problems which are of greatest importance to the
DMV’s business.

Application Development Component Document Page 17

Department of Motor Vehicles

Products

Products
1. Rational ClearQuest

Tech Watch
None

Review Cycle
1 year

Application Development Component Document Page 18

Department of Motor Vehicles

Version and Configuration Management Tools Sub-Component

Definition

These are developer oriented tools for the management of source code, bitmaps,
documents and related files in a large software project. Version-control tools provide a
database that is used to keep track of the revisions made to a program by all the
programmers and developers involved in it.

Standards

Version and Configuration Management Tools Standards

1. There are currently no standards identified in this area.

Products

Products
1. Rational ClearCase Family

Tech Watch
None

Review Cycle
1 year

Application Development Component Document Page 19

Department of Motor Vehicles

Integrated Development Environments (IDEs) Sub-Component

Definition

IDEs are targeted toward the development of enterprise-wide applications. IDEs
support the entire application development lifecycle including requirement analysis,
design development, testing and deployment. Applications developed using these tools
are very scalable and may be targeted to a large number of users on different operating
platforms. They can support a three-tiered architecture with varying level of efforts.
With GUI-based application development environments, there is a repository that holds
the business logic. Specific attributes of IDEs include:

�� Support of database processing

�� Provide homogenous development environments for both client and server – all tiers
of the application are written with the same language

�� Support multiple platforms

�� Targeted towards developing industrial strength applications which can be deployed
across heterogeneous platforms accessing data from different data sources

Standards

 # IDE Standards

1. The IDE should support DMV-standard languages.

Rationale:

�� There are no international or de facto standards for IDEs.

(NOTE: It is likely that DMV will have different IDEs for database and for middle-tier and UI
development.)

2. An IDE must support interface to the standard Version Control tools.

Rationale:

�� There are no international or de facto standards for IDEs. However, integration of IDEs with
version control tools is required to support enterprise-wide, standardized configuration
management [CAP 46].

3. Must support the J2EE Platform specification

Application Development Component Document Page 20

Department of Motor Vehicles

 # IDE Standards

Rationale:

�� The J2EE platform specification is the accepted industry standard that defines a means for
ensuring compatibility between middleware services and components. The designation of
J2EE as the DMV middleware standard ensures DMV of being able to take advantage of
scalable, component-based, object-oriented architectural standards agreed to by most of the
information technology industry

Products

Products

1. IBM VisualAge For Java

Tech Watch
None

Review Cycle
1 year

Application Development Component Document Page 21

Department of Motor Vehicles

Revision History

August 30, 2000 – Products version approved at Consensus Meeting.

October 9, 2002 – Reviewed and approved for BEAM Intranet.

Application Development Component Document Page 22

Department of Motor Vehicles

	Section 1 - Background and Decision Tools
	Business Direction
	Architecture Requirements
	Conceptual Architecture

	Section 2 - BEAM Recommendations
	Application Development Component
	Application Development Component Principles
	Application Development Toolset Vision*

	Application Development Sub-Components
	Requirements Management and Tracking Tools Sub-Component
	
	Definition
	Standards
	Products
	Tech Watch
	Review Cycle

	Languages Sub-Component
	
	Definition
	Standards
	Tech Watch
	Review Cycle

	Code Generators Sub-Component
	
	Definition
	Standards
	Products
	Tech Watch
	Review Cycle

	Issue Tracking and Resolution Tools Sub-Component
	
	Definition
	Standards
	Products
	Tech Watch
	Review Cycle

	Version and Configuration Management Tools Sub-Component
	
	Definition
	Standards
	Products
	Tech Watch
	Review Cycle

	Integrated Development Environments (IDEs) Sub-Component
	
	Definition
	Standards
	Products
	Tech Watch
	Review Cycle

	Revision History

